

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4735

Probability & Statistics 4

Wednesday

21 JUNE 2006

Afternoon

1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

© OCR 2006 [L/102/2707]

- 1 (i) State whether the following are true or false for the random variables X and Y.
 - (a) X and Y are independent $\Longrightarrow Cov(X, Y) = 0$.
 - **(b)** $Cov(X, Y) = 0 \Longrightarrow X$ and Y are independent.
 - (c) $Cov(X, Y) \neq 0 \Longrightarrow X$ and Y are not independent.

[2]

- (ii) Given that Var(X) = 2, Var(Y) = 3 and Var(2X Y) = 6, find Cov(X, Y). [4]
- 2 Out of a sample of 60 pairs of twin boys it was found that the first-born in 37 of the pairs was taller than the second-born. In the remaining 23 pairs the second-born was taller.

Stating clearly a necessary assumption, carry out a test at the 5% significance level of whether, in a majority of pairs of twin boys, the first-born is taller than the second-born. [9]

- 5% of valves manufactured in a certain factory are faulty. Each of the valves is tested by a machine which classifies 98% of faulty valves as faulty. It classifies 96% of non-faulty valves as non-faulty. F denotes the event 'a valve is faulty' and C denotes the event 'a valve is classified as faulty'.
 - (i) Show that P(C) = 0.087. [3]
 - (ii) Find $P(F \mid C)$. [3]

Each month 5000 valves are sold, all of which the machine classified as non-faulty.

- (iii) Find the expected number of faulty valves sold each month. [4]
- 4 The continuous random variable X has a uniform distribution with probability density function given by

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b, \\ 0 & \text{otherwise,} \end{cases}$$

where a and b are constants. This distribution is denoted by U(a, b).

(i) Show that the moment generating function of X is $\frac{e^{bt} - e^{at}}{t(b-a)}$. [3]

For the independent random variables X_1 and X_2 , $X_1 \sim U(-1, 0)$ and $X_2 \sim U(0, 1)$.

(ii) Find the moment generating function of T, where $T = X_1 + X_2$. [2]

S denotes the sum of two independent observations of Y, where $Y \sim U(-\frac{1}{2}, \frac{1}{2})$.

(iii) Show that S has the same moment generating function as T, and state what this indicates about the distributions of S and T. [4]

- A random sample of 13 observations of a continuous random variable is taken, and the values ranked from 1 to 13. Four of these rankings are selected at random. The order in which the rankings are selected is irrelevant.
 - (i) Calculate how many possible different selections there are of the 4 rankings. [2]

The sum of the 4 rankings is denoted by R.

(ii) List all the selections of 4 rankings for which $R \le 13$, and hence obtain the exact value of $P(R \le 13)$.

The distributions of the continuous random variables X and Y have the same shape. A random sample of 4 observations of X and a random sample of 9 observations of Y are taken and the 13 observations are ranked. The sum of the ranks of the 4 observations of X is 13.

- (iii) Naming the test used, and stating the null and alternative hypotheses, show that the samples give evidence of a difference in the medians of X and Y at a significance level smaller than 2%. [5]
- 6 The discrete random variable Y has probability generating function given by

$$G(t) = \frac{0.8t}{1 - 0.2t}.$$

(i) Show that
$$E(Y) = \frac{5}{4}$$
. [3]

- (ii) Express P(Y = r) in terms of r, giving the possible values of r. [4]
- (iii) By identifying the probability distribution of Y, or otherwise, find Var(Y). [3]
- (iv) Find $P(T \ge 8)$, where T is the sum of 6 independent observations of Y. [3]
- During the Great War, *Invictor* tanks were used, but records of how many were manufactured have been lost. It may be assumed that the tanks had integer serial numbers ranging consecutively from 1 to n, where n is unknown. Suppose that a randomly selected tank has serial number denoted by X.

(i) Write down E(X) and show that
$$Var(X) = \frac{1}{12}(n^2 - 1)$$
. [4]

The remains of two *Invictor* tanks have serial numbers denoted by X_1 and X_2 .

(ii) Show that
$$N_1 = X_1 + X_2 - 1$$
 is an unbiased estimator of n . [2]

The larger of X_1 and X_2 is denoted by M.

(iii) Show that
$$P(M=r) = \frac{2(r-1)}{n(n-1)}$$
, for $r=2, 3, \ldots, n$. [3]

- (iv) Using the result $\sum_{r=2}^{n} r(r-1) = \frac{1}{3}(n^3 n)$, find E(M) and hence construct another unbiased estimator, N_2 , of n.
- (v) Given that the variance of N_1 is $\frac{1}{6}(n^2 n 2)$ and that N_1 is a more efficient estimator than N_2 , obtain an inequality for Var(M). [3]

Statistics 4 4735 MARK SCHEME June 2006

1	(i)	(a) True			B0 for 0,1 correct,
		(b) False	D2	2	B1 for 2 correct,
		(c) True	B2	2	B2 for 3 correct.
	(ii)	Var(2X-Y)=	M1		Using formula
		4Var(X)+Var(Y)-4Cov(X,Y)	A1		
		6=11-4Cov(X,Y)	M1		Obtain cov
		Cov(X,Y)=5/4	A1	4	cao
2		EITHER: sample is random OR twin pairs			
		chosen independently	B1		
		$H_0: m_F = m_S$, $H_1: m_F > m_S$	B1		For both using medians
		Use of B(60,0.5)	M1		
		Normal approx with $\mu=30$, $\sigma^2=15$	A1		Both
		EITHER: $z=(36.5-30)/\sqrt{15}$	M1		Standardising
		=1.678	A2		A1 if correct apart from missing or wrong cc
		OR:CR is $(X-30-0.5)/\sqrt{15} > 1.645$	M1		Setting up inequality
		X≥37	A2		A1 if correct apart from missing or wrong c.c.
		EITHER: 1.678> 1.645			
		OR: Sample value 37 in CR	M1		Correct comparison
		There is evidence that the first-born male twins are taller than the second			
		-born twin in a majority of cases.	A1		Conclusion in context
		OR: p-value: 0.0467 > 1.645	M1		Conclusion in context
		Completion	A1	9	
		NB: Exact Bin (60,0.5) p-value is 0.04623		hical c	calculator: full credit
3	(i)	$P(C)=P(C \mid F)P(F)+P(C \mid F')P(F')$	M1		Use of formula
		$=0.98\times0.05+0.04\times0.95$	A1	•	
		0.087 AG	A1	3	
	(ii)	$P(F \mid C) = \frac{0.05 \times 0.98}{0.05 \times 0.000 \times 0.000}$	M1A1		
	(11)	$0.05 \times 0.98 + 0.95 \times 0.04$	1411711		
		=0.5632	A1	3	art 0.563 or 49/87
	(iii)	$P(F \mid C')=P(C' \mid F)P(F) / P(C')$	M1		Conditional prob.
	(111)				-
	(111)	0.02×0.05/0.913 [0.001095]	A1		

OCR Page 2 of 3

Statistics 4 4735 June 2006

MARK SCHEME

4	(i)	$M_X(t) = \int_a^b \frac{1}{h-a} e^{xt} dt$	M1		Correct integral with limits
		$= \left[\frac{e^{xt}}{(b-a)t}\right]_a^b$	B1		Correct integral
		$=\frac{e^{bt}-e^{at}}{(b-a)t}AG$	A1	3	
	(ii)	Product of mgfs	M1		
		$\left(\frac{1-e^{-t}}{t}\right)\left(\frac{e^{t}-1}{t}\right)$	A1	2	
	(iii)	$M_{S}(t) = \left(\frac{e^{\frac{1}{2}t} - e^{-\frac{1}{2}t}}{t}\right)^{2}$	M1		Square of M _Y (t)
		= $(e^{t}-2+e^{-t})/t^{2}$ mgfs of S and T are same S and T have identical distribution	Aldep depAl s Bl	4	Correctly shown Correctly shown
5	(i)	¹³ C ₄ 715	M1 A1	2	Use of formula
	(ii)	1234,1235,1236,1237,1245,1246, 1345 7/715	B2 B1√	3	B1 for 5 or 6 ft (i)
	(iii)	Wilcoxon Rank Sum Test $H_0: m_X = m_Y$, $H_1: m_X \neq m_Y$ Use $P(R \le 13)$ $2 \times 7/715 \times 100 = 1.958\% < 2\%$ Reject H_0 , evidence of difference is	B1 B1 M1 M1		Both, involving medians Comparing correctly
		medians at a significance level of (smaller than) 2% SR: If tables used, B1B1 M1 for CV with correct comparison for rejection M1 for rejection at 2% (not <) Max 4/5	A1	5	

Page 3 of 3

MARK SCHEME STATISTICS 4

4735

June 2006

	(i)	$G'(t)=[0.8(1-0.2t)+0.16t]/(1-0.2t)^2$	M1		Quotient or product rule	
	(-)		A1		2 done or product full	
		$G'(t)=0.8/0.8^2=5/4$ AG	A1	3		
	(ii)	$G(t)=0.8t (1-0.2t)^{-1}$	M1		Use binomial expansion	
		$=0.8t(1+0.2t+0.04t^2+)$	A1		At least 2 correct terms	
		$P(Y=r)=0.8(0.2)^{r-1}$	A1		OD (C(0.0)	
		<i>r</i> =1,2,3,	A1	4	OR from G(0.8)	
	(iii)	EITHER: <i>Y</i> ~G(0.8)	B1		Parameter not required	
		$Var(Y)=(1-0.8)/0.8^2$	M1			
		=0.3125 OR: $G''(t)$ =0.32/(1-0.2 t) ³	A1			
		Use $G''(1)+G'(1)-(G'(1))^2$	B1 M1			
		0.3125	A1	3		
					(2, ())6	
	(iv)	$G_T(t) = 0.8^6 t^6 (1-0.2t)^{-6}$	B1		$(G_{Y}(t))^{6}$	
		$P(T \ge 8) = 1 - 0.8^{6} (1 + 6 \times 0.2)$ = 0.42328	M1	2	Two terms in bracket	
		-0.42328	A1	3	art 0.423	
	(i)	$E(X) = \frac{1}{2}(n+1)$	B1			
		$Var(X)=\frac{1}{n}\sum_{n}r^{2}-\frac{1}{4}(n+1)^{2}$	M1		Use of variance formula	
		$=\frac{1}{6}(n+1)(2n+1) - \frac{1}{4}(n+1)^2$	A1			
		$=^{1}/_{12}(n^{2}-1)$ AG	A1	4	Correctly obtained	
	(ii)	$E(N_1)=E(X_1)+E(X_2)-1$	M1			
		$=\frac{1}{2}(n+1) + \frac{1}{2}(n+1)-1$				
		$=n$, (so N_1 is an unbiased	A 1	2		
		estimator of <i>n</i>)	A1	2		
(iii) $P(M=r)=$						
	EITH	ER: $P(X_1 < r, X_2 = r) + P(X_1 = r, X_2 < r)$	M1			
		= ((r-1)/n)(1/(n-1)) + (1/n)(r-1)/(n-1)	A1			
	0.0	=2(r-1)/[n(n-1)] AG, $r=2,3,4,$	A1			
	OR:	Choose 1 from r -1 and 1 from 1	M1			
		$^{r-1}C_1 \times ^1C_1 / ^nC_2$	A1	2		
		$=(r-1)/[\frac{1}{2}n(n-1)]=AG$	A1	3		
	(:)	$\sum_{n=1}^{\infty} n(n-1)$	3.61			
	(iv)	$E(M) = \frac{2}{n(n-1)} \sum_{r=2}^{n} r(r-1)$	M1			
		$=\frac{2}{3}(n+1)$	A1			
	-	$N_2 = \frac{3}{2}M-1$	A1√	3	ft E(M)	
	(v)	$Var(N_1) < Var(N_2)$ or equivalent	M1		Stated or implied	
	(1)	$\frac{1}{6}(n^2-n-2) < \frac{9}{4} \text{Var}(M)$	A1		Sauce of implied	
		$Var(M) > \frac{2}{27}(n^2-n-2)$	111			